a-METALLIERTE AMINE DURCH DEPROTONIERUNG ALIPHATISCHER N-METHYLAMINE

Hubertus Ahlbrecht * und Horst Dollinger Institut für Organische Chemie, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-6300 Gießen, W.-Germany

ABSTRACT: Aliphatic N-methylamines can be deprotonated directly by means of s-butyllithium/ potassium t-butoxide to give dialkylaminomethyl potassium or after metal exchange the more nucleophilic dialkylaminomethyl lithium.

Die Deprotonierung von Aminen 1 in a-Stellung gelang bisher nur mit Hilfe aktivierender Substituenten am α-Kohlenstoffatom oder am Stickstoffatom. Befanden sie sich am Kohlenstoff (R¹ etwa

$$R^{\frac{3}{2}} N \sqrt{R^{\frac{2}{2}}}$$

$$\frac{1}{2} R^{\frac{1}{2}}$$

Vinyl ², Phenyl ³, Carbalkoxyl ⁴ oder Cyano ⁵), bildeten sich mesomeriestabilisierte Carbanionen, befanden sie sich am Stickstoff (R² etwa Nitroso, Acyl oder Thioacyl ⁶), bildeten sich sogenannte dipolstabilisierte 7 Carbanionen. Nicht stabilisierte a-metallierte Amine wie 3 b waren gut nur durch Ummetallierung zugänglich ($R^1 = Sn(n-Bu)_2$)⁸.

Die direkte Metallierung mit Alkyllithiumverbindungen wurde zwar beobachtet, erfolgte aber nur in sehr geringem Ausmaß Y.

Wir fanden nun, daß das kürzlich auch für die Metallierung von t-Butylmethylether ¹¹ erfolgreich eingesetzte Basensystem s-Butyllithium/Kalium-t-butoxid ¹² die Deprotonierung bewirkt, wenn man überschüssiges Amin als Lösungsmittel verwendet.

Tropft man unter Argon 12 mmol s-Butyllithium (~12 ml einer käuflichen Lösung des Reagens in Isopentan) bei -78° C zu 10 ml N-Methylpiperidin 2 und 12 mmol Kalium-t-butoxid und rührt anschliessend 1 h bei 0°C, so erhält man eine braunschwarze Suspension der Kaliumverbindung 3 a. Diese wird auf -78° C gekühlt und mit 10 mmol n-Octylbromid (gelöst in 5 ml Ether) umgesetzt. Man läßt über Nacht auf Raumtemperatur kommen (~16 h) und arbeitet wäßrig auf. Nach Entfernen des Lösungsmittels und Destillation erhält man das Amin 4 in einer Ausbeute von 70%.

Unter den gleichen Bedingungen wurden mit anderen Metallierungsreagentien (s-BuLi, t-BuLi, t-BuLi/KOt-Bu, n-BuLi/KOt-Bu) keine oder nur sehr geringfügige Umsetzungen beobachtet. Auch durch Einwirkung von s-Butyllithium/Kalium-t-butoxid in Petrolether auf equimolare Mengen $\underline{2}$ bildete sich kein 3 a.

Das Kaliumsalz <u>3 a</u> ist offenbar ein stark basisches und wenig nucleophiles Reagens, denn bei Reaktion mit enolisierbaren Carbonylverbindungen konnten nur relativ geringe Mengen an Hydroxyalkylierungsprodukt isoliert werden.

Wir haben daher mit Lithiumbromid 13 in Ether das Lithiumsalz $\underline{3}$ \underline{b} erzeugt, das mit den entsprechenden Carbonylverbindungen die β -Hydroxyamine $\underline{5}$ - $\underline{9}$ in deutlich besseren, wenn auch noch nicht voll befriedigenden Ausbeuten liefert (NR $_2$ = Piperidino). Hierzu gibt man zu einer wie oben hergestellten Suspension von $\underline{3}$ \underline{a} bei -78°C 40 ml einer \sim 0,33 molaren Lösung von Lithiumbromid in Diethylether. Nach 1 h Rühren bei 0°C liegt die orangebraune Suspension von $\underline{3}$ \underline{b} vor. Man tropft bei -78°C 10 mmol Carbonylverbindung (gelöst in 5 ml Ether) zu und läßt über Nacht auf Raumtemperatur kommen (\sim 16 h).

Mit Cyclohexenon bildet sich – auch in Gegenwart von HMPT 17 – nur das 1,2-Addukt 9.

Unter den gleichen Bedingungen wie $\underline{2}$ läßt sich auch N-Methylpyrrolidin und Trimethylamin deprotonieren, wie die Umsetzung mit Benzaldehyd zu $\underline{10}$ und $\underline{11}$ zeigt.

Die analytischen und spektroskopischen Daten aller dargestellten Verbindungen stimmen mit den angegebenen Strukturen überein. 18

Die Deprotonierungsreaktion dürfte daher allgemein auf aliphatische N-Methylamine anwendbar sein. Es zeichnet sich somit ein einfacher und direkter Weg der nucleophilen Dialkylaminomethylierung ab, vor allem, wenn es gelingt, die Nucleophilie von Reagentien wie <u>3</u> etwa durch Übergang zu noch weniger elektropositiven Metallen weiter zu steigern.

Wir danken dem Fonds der Chemischen Industrie für finanzielle Unterstützung.

Literaturverzeichnis

- H. Dollinger, Dissertation Universität Gießen, in Vorbereitung.
- H. Ahlbrecht und J. Eichler, Synthesis 1974, 672; S. F. Martin und M. T. DuPriest, Tetrahedron

 Lett. 1977, 3925.
- F. T. Oakes und J. F. Sebastian, <u>J. Organometal. Chem.</u> 159, 363 (1978).
- 4 A. M. Touzin, <u>Tetrahedron Lett.</u> 1975, 1477.
- ⁵ R. E. Smith, G. F. Morris und C. R. Hauser, <u>J. Org. Chem.</u> <u>33</u>, 2562 (1968).
- Jüngste Zusammenfassung s. D. Seebach, J. J. Lohmann, M. A. Syfrig und M. Yoshifuji, <u>Tetra-hedron</u> 39, 1963 (1983).
- P. Beak und D. B. Reitz, <u>Chem. Rev.</u> 78, 275 (1978).
- D. J. Peterson, J. Am. Chem. Soc. 93, 4027 (1971); D. J. Peterson und J. F. Ward, <u>J. Organometal.</u>
 Chem. 66, 209 (1974).

- 9 D. J. Peterson und H. R. Hays, <u>J. Org. Chem.</u> 30, 1939 (1965).
- ¹⁰ R. K. Joshi, L. Krasnec und I. Lacko, <u>Helv. Chim. Acta</u> *5*4, 112 (1971).
- E. J. Corey und T. M. Eckrich, <u>Tetrahedron Lett.</u> 1983, 3165.
- L. Lochmann, J. Pospisil und D. Lim, <u>Tetrahedron Lett.</u> 1966, 257; M. Schlosser, <u>J. Organometal.</u>

 <u>Chem.</u> 8, 9 (1967).
- M. Schlosser und J. Hartmann, <u>Angew. Chem.</u> <u>85</u>, 544 (1973); <u>Angew.Chem.Internat.Ed.</u> <u>12</u>, 508 (1973).
- S. L. Shapiro, H. Soloway und L. Freedman, J. Am. Chem. Soc. 80, 6060 (1958).
- A. S. Angeloni, S. Marzocchi und G. Scapini, Gazz. Chim. Ital. 107, 421 (1977).
- S. Hayashi, M. Furukawa, Y. Fujino und T. Ohkawara, <u>Chem.Pharm. Bull. (Tokyo)</u> 17, 1054 (1969); <u>Chem. Abstr.</u> 72, 55190 d (1970).
- ¹⁷ A. Krief, <u>Tetrahedron</u> 36, 2531 (1980).
- 18 13C-NMR-Daten (20 MHz, CDCl₃) der Verbindungen <u>4</u> <u>11:</u>
 - 4: 14.1 (q), 22.8, 24.7, 26.2, 27.2, 27.9, 29.5, 29.8, 32.1, 54.8 (t), 59.8 (t).
 - 5: 24.2 (t), 26.0 (t), 54.5 (t) 67.2 (t), 68.8 (d), 125.8 (d), 127.1 (d), 128.1 (d), 142.8 (s).
 - 6: 24.5 (t), 25.7 (q), 26.3 (t), 33.3 (s), 54.7 (t), 60.0 (t), 72.9 (d).
 - 7: 18.3 (g), 24.5 (t), 26.3 (t), 32.5 (d), 54.8 (t), 62.8 (t), 70.8 (d).
 - 8: 22.3 (t), 24.1 (t), 26.1 (t), 26.6 (t), 37.0 (t), 57.4 (t), 68.6 (t), 69.9 (s).
 - 9: 19.2 (t), 24.0 (t), 25.3 (t), 26.5 (t), 35.2 (t), 57.0 (t), 68.2 (t), 68.6 (s), 129.0 (d), 132.7 (d).
 - 10: 23.6 (t), 54.0 (t), 64.6 (t), 71.0 (d), 125.8 (d), 127.1 (d), 128.1 (d), 143.1 (s).
 - 11: 45.3 (q), 67.8 (t), 69.8 (d), 125.9 (d), 127.4 (d), 128.3 (d), 142.5 (s).

(Received in Germany 23 December 1983)